Agilent Community
Agilent Community
  • User
  • Site
  • Search the Community
  • User
Consumables
  • Technical Areas
Consumables
Wiki The importance of chemical composition for vial performance
  • Announcements
  • Forum
  • Files
  • Wiki
  • More
  • Cancel
  • Consumables
  • A Beginner’s Guide to Hydrophobic Interaction Chromatography
  • A simple tip to protect your columns
  • A Tip for Preparing Robust and Consistent Mobile Phases
  • Achieve accurate and repeatable gas flow meter measurements
  • AdvanceBio Columns Blog Series
  • Agilent 123 Meter Sodium probe maintenance
  • Agilent Collection of Columns, Supplies, and Standards Resources
  • Analysis of microplastics in the environment
  • Analyzing ADCs by HIC
  • Avoiding downtime in the lab: top tips for GC/MS success
  • Best Practices for Aqueous Mobile Phases
  • Best Practices for Making Good Connections
  • Bio LC Column User Guides
  • Bursting Tubing and Columns (GC and HPLC)
  • Calculate the Maximum Allowable Working Pressure for Tubing
  • Calculating Column Volume
  • Cannabis Potency Testing: a Reliable, Cost-Effective Method
  • Carbohydrate Analyses in LC
  • Checking Your Intuition - Sub 2 µm vs Superficially Porous
  • Choosing the right GC Injection Technique
  • Choosing the right pore size for size exclusion chromatography
  • Columns, Supplies, and Standards Knowledgebase
  • Consumables Applications and Workflows
  • Consumables Recommended Supplies Lists for Agilent.com
  • Custom Product Request
  • Extreme Makeover – Derivatizations in Chromatography – Part 1 GC
  • Extreme Makeover – Derivatizations in Chromatography – Part 2 LC
  • Fake It Until You Make It: When BioInert Isn’t an Option
  • Flipping Amino Acid Analysis on Its Head
  • Glycans at a glance:  Analyzing therapeutic glycoproteins
  • Handle and Care of Syringes
  • Help! My Peaks Look Strange - Fronting and Tailing in GC
  • Help! My Peaks Look Strange - Saddle Points - LC/GC Troubleshooting
  • How do I select a Split/Splitless liner?
  • Hydrophobic Interaction Chromatography of Proteins and mAbs
  • Importance of Silica Particle Strength for Sub-2 µm SEC Columns
  • KB: Ferrules recommended for GC self-tightening column nut
  • LC and LC/MS Columns - USP Designations
  • LC Column User Guides
  • LC Method Translation - the Dwell Volume
  • Minimize spectroscopy workflow disruptions
  • Minimizing Metals for Best HILIC Results
  • More than just a drink: Analyzing the elemental composition of beer
  • Multi-Attribute Methods – Peptide Mapping Part IV
  • Must See Webinars
  • Nomenclature of CFC's/Freons/Halons/Coolants
  • Oligonucleotide Analysis - Unexpected Details Matter
  • Optimizing Bonding Chemistry for Sub-2 µm SEC Particles
  • Pass the Salt, Please – Mobile Phase Preparation for HIC
  • Pesticides and their stability during GC analyses
  • Pre-Columns - the forgotten art of using retention gaps
  • Problematic polar analytes? Hello HILIC…
  • Protecting your laboratory productivity
  • Recommended Reading
  • Sample Prep Pointers - Peptide Mapping Part I
  • Save your results with sample filtration
  • Simplified cone inspection with the new Agilent LED measuring magnifier
  • Software - Supported Method Development - The Scanview Application
  • Software tool for the ADM Flow Meter (G6691A)
  • Stay Safe: A Win-Win for Solvent Storage
  • Streamline your sample processing
  • The importance of chemical composition for vial performance
  • Tips & Tricks for Amino Acid Analysis – Part I
  • Tips & Tricks for Amino Acid Analysis – Part II
  • Tips & Tricks for Amino Acid Analysis – Part III
  • Tips & Tricks for Amino Acid Analysis – Part IV
  • Tips for Smooth Sailing with HIC
  • Troubleshooting HPLC autosamplers
  • Troubleshooting HPLC degassers
  • Troubleshooting Sequence Coverage – Peptide Mapping Part III
  • UltiMetal Plus Flexible Metal Ferrule
  • UV, MS, TFA, and Formic Acid – What to use? Peptide Mapping Part II
  • What are the typical % Gain or EHT values for hollow cathode lamps?
  • You Need Lamps or Chemical Standards for Atomic Absorption Single-Element Analyses?
Still Need Help?

Post your question in our User Forum or Contact Support.

The importance of chemical composition for vial performance

Created by kylwilso kylwilso over 2 years ago | Last modified by Agilent Agilent over 2 years ago

Most analysts are more interested in the chemistry of their compounds or their reactions, but it is important not to overlook the chemistry of your sample handling supplies. The chemical composition, as well as other related factors, can have a dramatic effect on the quality of your separations. It also affects the reproducibility of your analysis, efficiency of your automated process, and overall vial performance.

 

An experiment is a multifactorial process, and assigning the effects of errors or failures from each small element can be a challenge. When a chromatography system is underperforming from a physical issue with a sample vial, cap, or septum, autosampler misalignments, crashes or hangs that cause sequence problems can result. These problems can result in unnecessary downtime, expensive repairs, and even the loss of your precious samples.

 

The effects of inconsistent or suboptimal chemical composition of these components are less easy to see, but are potentially damaging to your workflow or results.


The ideal chemical composition of a glass vial

Perhaps the key metric in determining the suitability and analytical performance of a vial is the linear COE (coefficient of expansion). COE is a standardized measure of the fractional change in size per degree change in temperature at a constant pressure.

 

COE is a result of the concentration of Boric Acid in the borosilicate glass used to manufacture a vial, and the chemical resistance properties of the glass. Clear borosilicate glass with a COE of 33 or 51, and amber borosilicate glass with a COE of 51 are known as Type 1. They deliver the best overall vial performance, with:

 

• Lower pH shifts
• Increased stability above 100 °C
• Greater chemical resistance

 

It is important to note that the elemental composition of borosilicate glass includes a wide range of metal oxides in addition to Boron. Aluminum, Magnesium, Sodium, Potassium, Iron, Barium, and Titanium can all be incorporated into the recipe in varying amounts. The higher the metal content, the higher the COE. Some manufacturers offer budget vials with a COE in the range 70–71. This is because higher metal concentrations mean that significantly lower amounts of heat are required in the annealing process. It can reduce the cost of manufacturing by up to 75% but will affect vial performance.

 

It is well proven that 70–71 COE vials are significantly more fragile and less chemically inert. With this type of glass, metals can migrate to the surface of the vial during the annealing process, forming active sites that ‘react’ with your sample. More information about this effect and the full chemical composition of the borosilicate glass that Agilent uses to manufacture its vials can be found here. 

 

The Agilent specification

• The COE of Agilent vials is 32–33±1.5 for clear glass, and 48–56±1.5 for amber glass
• All vials meet ASTM E438 ‘laboratory class glass’ standards
• All vials use Type 1 borosilicate glass.

 

Choosing the right septa for your work

In the same way that chemical composition underpins the choice of a vial, chemistry is an important factor in choosing the right septa for your work. The best analytical performance will be achieved with a septum in the cap of your vial that protects your sample and is as chemically inert as possible. It should resist leaching or bleeding of materials from the septum into the sample matrix.

 

Material combinations often used for septa include: PTFE, silicone, red rubber, fluoroelastomers and butyl, for example, with PTFE having by far the widest chemical compatibility. The materials are layered in one of three ways to form a finished septum:

• Single layer – PTFE or red rubber, for single use only
• Bilayer – one layer forms the barrier, the other allows the septa to reseal after injection, usually PTFE and silicone, for repeat injections and sample storage
• Tri-layer – PTFE surrounded on both faces by silicone, improved chemical compatibility, for repeat injections and sample storage.

 

To limit the impact of siloxane bleed, a phenomenon that can compromise analytical sensitivity and reduce lab productivity, Agilent has developed an industry-leading conditioning process. Siloxane leeches from the silicone layer of the septum and, in untreated septa, levels increase due to multiple injections, elevated temperatures or solvent interaction. Agilent certified septa offer significantly improved vial performance in all areas.

 

The Agilent specification:

• Proven proprietary compound compositions give excellent chemical compatibility
• Limited siloxane bleed
• Consistent performance regarding the force needed to pierce the septa

More information about the chemical compatibility of various types of Agilent septa can be found here.

 

Buyers beware

If your goal is to improve analytical performance, laboratory productivity, and operational efficiency, Agilent recommends that you stay away from low cost products. For improved vial performance, work with certified 33–51 COE Type 1 borosilicate glass vials. Choose an Agilent certified septum that matches your experimental conditions and sample storage needs perfectly.

 

The Agilent interactive vial selection tool and vial selection poster provide information required to assist analysts in making an informed decision about what is best for their unique applications.

Discover more at: www.agilent.com/chem/vialsresources and www.agilent.com/en/product/vials-sample-containment/vials-caps-inserts-septa

 

keywords: supplies; chemical composition; vials; separations; performance; reproducibility; analysis; sample vial; caps; septum; chromatography; samples; glass vial

  • reproducibilty
  • performance
  • separation
  • vials
  • chemical composition
  • chromatography
  • glass vial
  • analysis
  • sample vial
  • caps
  • supplies
  • sample
  • septum
  • Share
  • History
  • More
  • Cancel
Anonymous
Related

Agilent Community Feedback

Agilent Community Feedback

×
We are glad this was helpful! We are sorry this was not helpful. If you still need assistance please create a community post or contact support. To help us improve, please provide any additional feedback. For full details of how we will treat your information, please view our privacy policy.
Submit Cancel
Submit Cancel
Recommended
Privacy Statement
Terms of Use
Contact Us
Site Help