
Central Deployment of OpenLab CDS Client
DISCLAIMER: The procedures described in this document require knowledge and experience with deploying products using Microsoft SCCM in a
production environment.
Please contact Microsoft directly for any questions related to SCCM. Agilent does not provide support for Microsoft SCCM.

Overview
Enterprises with a large number of systems manage software installations using professional software configuration management (SCM) tools such
as Microsoft SCCM. SCM tools make it easier to know what software is installed on which machines and eliminates chances for errors during
installation or during applying updates and patches.

Software installers with all the required parameters can be defined as “Applications” in SCM tools. Such predefined applications can then easily be
pulled or pushed onto target machines. SCCM provide many benefits such as:

● Make installations accessible to end users, so they are able to search for and pull down any product onto their machine themselves
● Reduce delays and expenses associated with deploying new systems.
● Keeping track of what is installed on which machines.
● Notify users when a patch is available and needs to be applied on their system.
● Provide a time window when users should apply the patch.
● Allow users to schedule the patching to happen during off hours.
● Allow IT administrators to push an update.

This document provides the information needed to create applications for OpenLab CDS Clients (with OpenLab Server backend) in Microsoft
SCCM. This setup can be used to install CDS Client on a new system as well as to upgrade an older version of CDS Client.

Setting up OpenLab CDS Client
In order to setup “OpenLab CDS Client” in SCCM an application needs to be defined. Figure below shows and example setup for CDS Client
version 2.5.0.927. Fill in the “General Information” tab as applicable to your environment.

While defining an application a “Deployment Type” also needs to be defined for “OpenLab CDS Client”. Deployment Types provides information
about the installation method and source file location for an application.

Defining Deployment Type content
The deployment type for “OpenLab CDS Client” needs to be manually specified. First the OpenLab CDS installation media needs to be hosted on a
shared network location that the client systems can access. This location then needs to be provided as the content location for the deployment type.
Additionally the following settings should be used to specify the installation program, uninstallation program and start location.

Install program:
CDSInstaller.exe -s Client=True OlssHostName=<<OpenLabServer>> LicenseAccepted=True -norestart

Installation start in:
\Setup

Uninstall program:
CDSInstaller.exe -s -uninstall -norestart

Installation start in:
\Setup

Replace “<<OpenLabServer>>” with the name of your OpenLab Server that the client system can use to connect to it.

Client cache settings
SCCM Client cache is a temporary location (%windir%\ccmcache) for downloading software, applications and updates. By default, cache size is 5 GB.
However, OpenLab CDS Client installation may require up to 10 GB of cache size. So, the cache size needs to be increased.

This setting can be updated in Client Settings on SCCM server and pushed to client machines:

● In the Configuration Manager Console navigate to Administration > Overview > Client Settings.
● On the Home tab, in the Create group, select Create Custom Client Device Settings and the Create Custom Client Device Settings –popup

will show.
● On the General page, fill in with Name<aName> and select Client Cache Settings.
● On the Client Cache Settings page, set Configure client cache size to "Yes" and set Maximum cache size (MB) to "10000" and click OK.
● Select the new policy <aName> and on the Home tab, in the Client Settings group, select Deploy.
● Select <aDeviceCollection> and click OK.

Defining the Detection Method
SCCM requires detection methods for applications. Detection methods are used to determine whether the application is already installed or not. If
an application is deployed to a system where it is already present, then a properly configured detection method will find that application and the
application reinstall will be avoided. If the application is not present it will be installed and the configured detection method will be used to verify the
installation once it is complete. An install that can be verified by the detection method will be viewed as successful while an install that cannot be

verified with the configured detection method will be seen as a failure. The SCCM client can also detect whether an application is installed using
these methods, even if the user did not use SCCM to install the application.

For detecting “OpenLab CDS Client” a custom script should be used.

Setting PowerShell Execution Policy
PowerShell execution policies on target client systems usually will not allow script execution. SCCM server should be set up so that it instructs
configuration manager clients to bypass the execution policy.

1. In the Configuration Manager Console navigate to Administration > Overview > Client Settings.
2. On the Home tab, in the Create group, select Create Custom Client Device Settings.
3. On the General page, fill in with Name: OpenLabCDS and select Computer Agent.
4. On the Computer Agent page, select the option ByPass for PowerShell execution policy and click Ok.
5. Select the new policy: OpenLabCDS and on the Home tab, in the Client Settings group, select Deploy.
6. Select your device collection and click Ok.

PowerShell Example
Script Parameters:

1. $productUpgradeCode = {5447F66A-1B10-4DF5-AB1B-D880A1F298FA}

2. $productVersion = 2.5
3. $serverAddress = net.tcp://<<OpenLabServer>>:6577/Agilent/OpenLAB/

Replace “<<OpenLabServer>>” with the name or IP address of your OpenLab Server that the client system can use to connect to it.

The following example script can be used after updating the serverAddress variable to the correct value.
Note: PowerShell execution policy must be set in SCCM as described earlier also.

OpenLab Installers: centralized install & update

Version: 2.5
Build: <OLINST_BUILD_NUMBER_INSERT_HERE>

(c) Agilent Technologies 2020

<#
.DESCRIPTION
 Detection method to check already installed CDS (Client, AIC, Workstation)

.PARAMETER $productUpgradeCode
 Upgrade code of CDS bundle to be installed
.PARAMETER $productVersion
 Current version of CDS bundle to be installed
.PARAMETER $serverAddress
 Current address of Agilent OpenLab CDS Server to connect

.OUTPUTS
 "Installed" will be written to the output, if CDS is already installed and configured with provided server address,
otherwise an empty string.
#>

$productUpgradeCode='{5447F66A-1B10-4DF5-AB1B-D880A1F298FA}' # OpenLab CDS Upgrade code
$productVersion=[version]'2.5' # OpenLab CDS Client Version
$serverAddress = 'net.tcp://<<OpenLabServer>>:6577/Agilent/OpenLAB/' # OpenLab Server endpoint

$keys="HKLM:\Software\Microsoft\Windows\CurrentVersion\Uninstall*",
 "HKLM:\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall*"

$product = Get-ItemProperty $keys |
 Where-Object BundleUpgradeCode -eq $productUpgradeCode |
 Select-Object DisplayName, BundleUpgradeCode, BundleVersion

if (-not($product)) {
 Exit # Not installed
}

if ([version]$product.BundleVersion -lt $productVersion) {
 Exit # Not installed
}

$olssConfig = Resolve-Path C:\ProgramData\Agilent\Agilent.OpenLab.Configuration.xml -ErrorAction SilentlyContinue

if (-not($olssConfig)) {
 Exit # Not installed
} else {
 $xml = New-Object System.Xml.XmlDocument
 $xml.PreserveWhitespace = $true
 $xml.Load($olssConfig)
 $serverId = $xml.config.ServersConfiguration.ConnectionId
 $currentServerAddress = $xml.DocumentElement.SelectSingleNode("descendant::ServerAddress[Id='" + $serverId + "']")

 if ($currentServerAddress.Address -eq $serverAddress) {
 Write-Host "Installed"
 Exit
 }
 Exit
}

VBScript Example
The following example script can be used after updating the ServerAddress variable to the correct value.
'###
'# OpenLab Installers: centralized install & update
'#
'# Version: 2.5
'# Build: <OLINST_BUILD_NUMBER_INSERT_HERE>
'#

'# (c) Agilent Technologies 2020
'#
'###

' "Installed" will be written to the output, if CDS is already installed
' and configured with the provided server address, otherwise an empty string.

'###
ProductUpgradeCode = "{5447F66A-1B10-4DF5-AB1B-D880A1F298FA}" ' OpenLab CDS Upgrade code
ProductVersion = 2.5 ' OpenLab CDS Client Version
ServerAddress = "net.tcp://<<OpenLabServer>>:6577/Agilent/OpenLAB/" ' OpenLab Server endpoint
'###

Main()

'WScript.Echo "Installed"
WScript.StdOut.Write "Installed"
WScript.Quit(0)

Function Main()
 OlssConfig = "C:\ProgramData\Agilent\Agilent.OpenLab.Configuration.xml" 'Olss config file
 RegistryHive = "HKEY_LOCAL_MACHINE\"
 RegLocation1 = "SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\"
 RegLocation2 = "SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Uninstall\"

 On Error Resume Next

 If GetBundleVersion(RegistryHive, RegLocation1, RegLocation2, ProductUpgradeCode) <> ProductVersion Then
 'WScript.Echo "Not installed"
 WScript.Quit(0)
 End If

 If FileExists(OlssConfig) = false Then
 'WScript.Echo "Not installed"
 WScript.Quit(0)
 Else
 If GetServerAddress(OlssConfig) <> ServerAddress Then
 'WScript.Echo "Not installed"
 WScript.Quit(0)

 End If
 End If
End Function

Function GetBundleVersion(Hive, location1, location2, upgradeCode)
 On Error Resume Next
 BundleVersion = TryGetVersionInBranch(Hive, location1, upgradeCode)
 If BundleVersion <> 0 Then
 GetBundleVersion = BundleVersion
 Exit Function
 End If
 GetBundleVersion = TryGetVersionInBranch(Hive, location2, upgradeCode)
End Function

Function TryGetVersionInBranch(Hive, location, upgradeCode)
 On Error Resume Next
 Dim BundleVersion
 Dim WSHShell
 Set WSHShell = CreateObject("WScript.Shell")

 keys = GetSubKeys(location)
 For Each RegistryKey In keys
 'BundleUpgradeCode - is a Multi-string value and WSHShell.RegRead returns it as an array
 bundleUpgradeCodesValues = WSHShell.RegRead(Hive + location + RegistryKey + "\BundleUpgradeCode")
 If Err.Number = 0 Then
 For i = 0 To UBound(bundleUpgradeCodesValues)
 If LCase(bundleUpgradeCodesValues(i)) = LCase(upgradeCode) Then
 BundleVersion = WSHShell.RegRead(Hive + location + RegistryKey + "\BundleVersion")
 If Err.Number = 0 Then
 TryGetVersionInBranch = CSng(Left(BundleVersion, 3))
 Set WSHShell = Nothing
 Exit Function
 Else
 Err.Clear
 End If
 End If
 Next
 Else
 Err.Clear
 End If
 Next

 Set WSHShell = Nothing
 TryGetVersionInBranch = 0
End Function

Function GetSubKeys(location)
 Const HKEY_LOCAL_MACHINE = &H80000002
 strComputer = "."

 Set oReg=GetObject("winmgmts:{impersonationLevel=impersonate}!\\" & _
 strComputer & "\root\default:StdRegProv")

 oReg.EnumKey HKEY_LOCAL_MACHINE, location, arrSubKeys
 Set oReg = Nothing
 GetSubKeys = arrSubKeys
End Function

Function FileExists(FilePath)
 Set fso = CreateObject("Scripting.FileSystemObject")
 If fso.FileExists(FilePath) Then
 FileExists=CBool(1)
 Else
 FileExists=CBool(0)
 End If
 Set fso = Nothing
End Function

Function GetServerAddress(conigName)
 On Error Resume Next
 Set objXMLDoc = CreateObject("Microsoft.XMLDOM")
 objXMLDoc.async = False
 objXMLDoc.load(conigName)

 Set ConnectionId = objXMLDoc.documentElement.selectSingleNode("ServersConfiguration/ConnectionId")
 Set AvailableServers = objXMLDoc.documentElement.selectNodes("ServersConfiguration/AvailableServers/ServerAddress")

 For Each ServerAddress In AvailableServers
 Set CurrentId = ServerAddress.selectSingleNode("Id")
 If CurrentId.text = ConnectionId.text Then
 GetServerAddress = ServerAddress.selectSingleNode("Address").text
 Set objXMLDoc = Nothing
 Exit Function

 End If
 Next
 Set objXMLDoc = Nothing
End Function

Defining User Experience
Take extra care to specify “Install for System” when defining the installation behavior.

SCCM Client Configuration

If the application does not appear in the client console, on the SCCM Client machine navigate to Control Panel → Configuration Manager →
Actions and run “Machine Policy Retrieval & Evaluation Cycle” and “User Policy Retrieval & Evaluation Cycle” actions manually.

Note: During installation of CDS Client, the system may require to be rebooted. After rebooting, relaunch SCCM client to confirm that CDS Client is
fully installed. If SCCM indicates that CDS Client is not yet installed, click on the Install button again.

SCCM setup for patch installation
Using a similar procedure, SCCM can be used to manage and distribute patches that have been released for OpenLab CDS also.

Setting up a patch for OpenLab CDS Client
In order to set up a patch in SCCM, an application needs to be defined.

While defining an application a “Deployment Type” also needs to be defined for the patch. Deployment Types provides information about the
installation method and source file location for the patch.

Defining content
If you get the patch in a zipped format you will need to unzip it before it can be deployed for SCCM. You may find that the ZIP has more than one
patch zips within it. Read the accompanying documentation to determine whether the patch is applicable to a CDS Client. Similar to the OpenLab
CDS installation media, you need to host the patch on a shared network location that the client systems can access.

A deployment type for a patch also needs to be manually created. The location then needs to be provided as the content location for the patch
deployment type. The following settings should be used to specify the installation program, uninstallation program and start location.
Note: If you want to disallow end users from uninstalling patches from SCCM Client Console, you can leave the uninstall command empty. Doing so
will disable the Uninstall button in the SCCM Client Console.

Install program:
OpenLab_CDS_Update.exe -s LicenseAccepted=True -norestart

Installation start in:
\Setup

Uninstall program:
OpenLab_CDS_Update.exe -s -uninstall -norestart

Uninstallation start in:
\Setup

In the “user experience” tab make sure to set install behavior to 'Install for system' and set 'Configuration Manager client will force a
mandatory restart'. These settings are required for patches.

Defining the Detection Method
Before you can define the detection method you need to find the upgrade code for the patch. Each patch has its own upgrade code. The patch
upgrade code is in “UpgradeCode.txt” file in the root folder of the patch.

For example, in the image above, the patch upgrade code is {4F5CE97B-E079-42A6-B9A3-5A2C41FC8FE1}.

For detecting a patch, a custom script should be used.
Script Parameters:

1. $PatchUpgradeCode = {4F5CE97B-E079-42A6-B9A3-5A2C41FC8FE1}

PowerShell Example
The following example script can be used after updating the PatchUpgradeCode variable to the correct value.
Note: PowerShell execution policy must be set in SCCM as described earlier also.

OpenLab Installers: centralized install & update

Version: 2.5
Build: <OLINST_BUILD_NUMBER_INSERT_HERE>

(c) Agilent Technologies 2020

<#
.DESCRIPTION
 Detection method to check already installed OpenLab Software Updates

.PARAMETER $PatchUpgradeCode
 Upgrade code of OpenLab Software Update bundle to be installed

.OUTPUTS
 "Installed" will be written to the output, if OpenLab Software Update is already installed and configured,
 otherwise an empty string.
#>

$PatchUpgradeCode ='{4F5CE97B-E079-42A6-B9A3-5A2C41FC8FE1}' # Patch Upgrade Code

$keys="HKLM:\Software\Microsoft\Windows\CurrentVersion\Uninstall*",
 "HKLM:\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall*"

$product = Get-ItemProperty $keys |
 Where-Object BundleUpgradeCode -eq $PatchUpgradeCode |
 Select-Object DisplayName, BundleUpgradeCode

if ($product) {
 Write-Host "Installed"
 Exit
}

VBScript Example
The following example script can be used after updating the patchUpgradeCode variable to the correct value.
'###
'# OpenLab Installers: centralized install & update
'#
'# Version: 2.5
'# Build: <OLINST_BUILD_NUMBER_INSERT_HERE>
'#
'# (c) Agilent Technologies 2020
'#
'###

' "Installed" will be written to the output, if OpenLab Software Update is already
' installed and configured, otherwise an empty string.

'###
patchUpgradeCode = "{4F5CE97B-E079-42A6-B9A3-5A2C41FC8FE1}" ' Patch Upgrade Code
'###

Main()

'WScript.Echo "Installed"
WScript.StdOut.Write "Installed"
WScript.Quit(0)

Function Main()
 RegistryHive = "HKEY_LOCAL_MACHINE\"
 RegLocation1 = "SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\"
 RegLocation2 = "SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Uninstall\"

 On Error Resume Next

 If (BundleExists(RegistryHive, RegLocation1, patchUpgradeCode) = False) And _
 (BundleExists(RegistryHive, RegLocation2, patchUpgradeCode) = False) Then
 'WScript.Echo "Not installed"
 WScript.Quit(0)
 End If
End Function

Function BundleExists(Hive, location, upgradeCode)
 On Error Resume Next
 Dim BundleVersion
 Dim WSHShell
 Set WSHShell = CreateObject("WScript.Shell")

 keys = GetSubKeys(location)
 For Each RegistryKey In keys
 'BundleUpgradeCode - is a Multi-string value and WSHShell.RegRead returns it as an array
 bundleUpgradeCodesValues = WSHShell.RegRead(Hive + location + RegistryKey + "\BundleUpgradeCode")
 If Err.Number = 0 Then
 For i = 0 To UBound(bundleUpgradeCodesValues)
 If LCase(bundleUpgradeCodesValues(i)) = LCase(upgradeCode) Then
 BundleExists = CBool(1)
 Set WSHShell = Nothing
 Exit Function
 End If
 Next
 Else
 Err.Clear
 End If
 Next
 Set WSHShell = Nothing
 BundleExists = CBool(0)
End Function

Function GetSubKeys(location)
 Const HKEY_LOCAL_MACHINE = &H80000002
 strComputer = "."

 Set oReg=GetObject("winmgmts:{impersonationLevel=impersonate}!\\" & _
 strComputer & "\root\default:StdRegProv")

 oReg.EnumKey HKEY_LOCAL_MACHINE, location, arrSubKeys
 Set oReg = Nothing
 GetSubKeys = arrSubKeys
End Function

	Central Deployment of OpenLab CDS Client
	Overview
	Setting up OpenLab CDS Client
	Defining Deployment Type content
	Client cache settings
	Defining the Detection Method
	Setting PowerShell Execution Policy
	PowerShell Example
	VBScript Example

	Defining User Experience

	SCCM Client Configuration

	SCCM setup for patch installation
	Setting up a patch for OpenLab CDS Client
	Defining content
	Defining the Detection Method
	PowerShell Example
	VBScript Example

