Agilent 6400 Series Triple Quadrupole LC/MS/MS Users Session

QQQ Method Development and Optimization

MassHunter Quant:

Method setup Peak detection optimization Quant troubleshooting

David Presser Application Scientist

Agenda

QQQ method development and optimization

- Source optimization for standard and Agilent Jetstream sources
- Compound optimization using flow injection or Optimizer software
- MassHunter Quant software
 - Current revision B.03.02: What's New
 - Review of Quant methods: creation from acquired data, existing batch
 - Global and Advanced parameters
 - Optimizing peak identification and rejection
 - Quant method troubleshooting: identification and integration

Agilent ESI and APCI sources: for polar to non-polar compounds

Agilent Multimode source for flexibility ESI or APCI or Mixed mode (simultaneous ESI/APCI)

Agilent Jetstream Technology (AJT)

Source optimization for Agilent LC/MS systems ESI, APCI, MM and Agilent Jetstream Technology (AJT)

Flow dependent parameters:

•Nebulizer pressure

- •Drying gas temperature and flow
- •Vaporizer temperature (MM)
- •Sheath gas flow (AJT)

Compound dependent parameters:

- Capillary voltage
- •Fragmentor voltage
- •Collision Energy (QQQ, QTOF)
- •Vaporizer temp (APCI, MM, AJT)
- •Sheath gas temperature (AJT)
- •Nozzle voltage (AJT)

Starting parameters for Agilent sources (small molecules)

Parameter	ESI source	APCI source
Nebulizer pressure	25 psi 0.2 mL/min 50 psi 1 mL/min	60 psi
Drying gas flow	10 Lpm <u><</u> 0.2 mL/min 12 Lpm > 0.4 mL/min	5 Lpm
Drying gas temp	325-350°C	350°C
Capillary voltage	3500V	3500V
Fragmentor voltage compound dependent	70-100 V Single quads 120-140V QQQ, TOF 140-170V 6230, 6530	70-100 V Single quads 120-140V QQQ, TOF 140-170V 6230, 6530

Starting parameters for Agilent sources (small molecules)

Parameter	Multimode source	Agilent Jetstream
Nebulizer pressure	60 psi ESI 20 psi APCI 40 psi Mixed mode	45 psi
Drying gas flow	5 Lpm	7 Lpm
Drying gas temp	250°C ESI, Mixed 300°C APCI	300°C
Capillary voltage	2000V	3500V
Charging voltage (MM)	2000V	
Nozzle voltage (AJT)		500V
Fragmentor voltage Compound dependent	70-100 V Single quads 120-140V QQQ, TOF 140-170V 6230, 6530	70-100 V Single quads 120-140V QQQ, TOF 140-170V 6230, 6530

Tuning and Calibration for Agilent QQQ systems

•Agilent QQQ systems are very stable and require infrequent Autotuning (if not, place a service call!).

•Current software uses "ESI-Low" tune mix for all QQQs.

•Routine use only requires resolution and mass axis verification for polarity and resolution modes to be used.

- Run performance check sample (lab SOP)
- Do Checktune (checks all three resolution modes)
- In Manual Tune, turn on calibrant and observe MS1 and MS2 profiles. Use *Adjust Gain and Offset* button if width or mass axis requires adjustment.

•If using negative ion, Autotuning should be done monthly or less to minimize source exposure to TFA.

- Flush source extensively with LC flow after 30-minute Autotune before running samples in negative ion.
- Autotune at least quarterly to optimize ion transmission and update EM voltage.

Optimizing the AJT source beginning with recommended starting values ()

Order of effect on sensitivity	Things to note
Sheath gas temperature (250°C)	Requires time to stabilize
Sheath gas flow (8 Lpm)	Generally 10-12 Lpm for 0.2-0.7mL
Nebulizer pressure (45 psi)	LC flow- and mobile phase- dependent
Capillary voltage (3500V)	Somewhat MW dependent
Nozzle voltage (0V)	Very compound- and polarity-dependent
Drying gas temperature (250°C)	Interaction with flow and sheath parms
Drying gas flow (5 Lpm)	Generally 5-7 Lpm, higher when in doubt

Optimizing the AJT source Typical values () and Increments

Or	der of effect on sensitivity	In	crements and ranges to test
	Sheath gas temperature (325°C)		50°C, 250-400°C
	Sheath gas flow (10 Lpm)		2 Lpm, 8 -12 Lpm
	Nebulizer pressure (40 psi)		5 psi, 25 – 50 psi
	Capillary voltage (3500V)		500V, 2500-4500V
	Nozzle voltage (0V)		500V, 0 - 2000V
	Drying gas temperature (300°C)		50°C, 250-350°C
	Drying gas flow (7 Lpm)		2 Lpm, 5-11 Lpm

Optimization techniques

•Fragmentor V and Collision Energy (for MS/MS systems) should be optimized first using recommended starting parameters for source.

•Voltages, gas flows change quickly and can be optimized with series of flow injections using method with injector program and time segments.

•Temperatures (sheath gas, drying gas, vaporizers) require equilibration time between injections; perhaps best done with final chromatography conditions.

Template flow injection methods also come with Optimizer software

Injector program for series of flow injections

Sample Properties ALS Bin Pump Column DAD MS QQQ	
Setup Options Injector Program Injection Injection Type C Standard injection C Injection with needle wash C Use injector priorizami Wash Viat 1	High Throughput Image: Second Strength Stren
Check to use injecto	r program

Injector program steps:

Valve to Bypass Remote Startpulse Repeat n times [n = number of time segments] Draw default amount from sample Valve to Mainpass Wait 0.25 min [adjust to sync with acq time segments] End repeat

Example Injector
Program with 2-min
spacing and explicit
repeats

Sample	Prope	erties ALS Bin Pump Column DAD MS QQQ						
<u>S</u> etup	<u>Options</u>	Injector Program						
#	Function	Time	Change					
			Insert					
6	WAIT		Append					
Inject	or Program	n						
#		Command	Cut					
1	DRA	W def. amount from sample 📃 🚽						
2	INJE	CT	Сору					
3	WAF	T 2 min	Paste					
4	DRA	W def. amount from sample						
5	INJE	INJECT Delete						
6	WAI	T 2 min 🔹	Check					

Note: Inject and Remote Startpulse commands work differently on QQQ and TOF/QTOF.

Injector program for series of flow injections Synchronize with MS time segments

F	Propertie:	s MS	QQQ												
Г	Tune file	e		Sto	p time —				Acquisition	Source	Chromatogram	Instrument			
atunes.Tune.xml O No limit/As Pump						Scan segn	ients								
		E	Frowse	68 0) 1		min		Segme	ent Name	Start Mass	End Mass	Scan Time	Fragmentor	Polarity
L									•		100	500	500	60	Positive
Г	lon sou	ice		Tin	ne filtering-										
	ESI Peak width 0.07 min														
L															
Γ	l ime se	gments-	1												
	#	Start ∧ Time	Scan Type	Div Valve	Delta EMV (+)	Delta EMV (-)	Stored								
	▶ 1	0	MS2 Scan	To MS	600	0									
	2	0.5	MS2 Scan	To MS	600	0			Scan para	neters					
	3	1.1	MS2 Scan	To MS	600	0	N		Step size:		0.1	▼ amu			
	4	1.5	MS2 Scan	To MS	600	0	N		Data stora	1e'	Centroid	-			
	5	2.1	MS2 Scan	To MS	600	0	•			j					
[1	1.9	сус	les/s 525.0	ms/cycle					Threshold:		10				

Fragmentor and Collision Energy optimization using flow injection with injector program Methylmalonic acid, dibutyl ester

Maximize MH+ ion transmission, minimize CID with Fragmentor voltage Maximize product ion signal(s) with Collision Energy Can fine tune each with smaller steps after initial experiments

Fragmentor and Collision Energy optimization using flow injection with injector program Androstenedione

Maximize MH+ ion transmission, minimize CID with Fragmentor voltage Maximize product ion signal(s) with Collision Energy Can fine tune each with smaller steps after initial experiments

Fragmentor and Collision Energy Determination with Optimizer software

- •Optional add-on to MassHunter QQQ acquisition software
- •Current version: B.02.01 (requires B.02.01 Acquisition)
- •Useful for frequent method development [new compound each week] or for multi-compound methods [e.g. toxicology, environmental applications]
- •Many toxicology and pesticide transitions are available in new Agilent application kits
- •Can use Flow Injection before LC separation is developed
- •Can use LC method to optimize multiple compounds in a few injections

N	lassH	lunter O	ptimizer							
D	New	Project	😑 Load Project 🛛 🔡 Save	Project 🔣 SaveA	s Project 🔡 Save (Compounds 🗙 De	elete Project 🝦	🚺 Start Optimization	😭 Ion Breakdown Profile	🛞 Stop Optimization 🖕
: @	Impo	ort From D	ataBase 💮 Import From	Excel 💮 Export	To Excel 💂					
Co	mpoun	id Setup	Precursor Ion Selection	Product Ion Selectio	n Optimizer Setup					
	Show	raculte cu								
	311000			-		NI 1 114	CP 161 1			
			Lompound Name	Group	Formula	Nominal Mass	Vial Number			
E.			testosterone	Anabolic	C19H28O2	288.21	Vial 2			
±.	I		dromostanolone	Anabolic	C20H32O2	304.24	P1-A7			
E.	I		methandrostenolon	Anabolic	C20H28O2	300.21	P1-A4			
E.	I		oxandrolone	Anabolic	C19H30O3	306.22	P1-A5			
	J		stanozolol	Anabolic	C21H32N2O	328.25	Vial 6			
<u>.</u>	0		nandrolone	Anabolic	C18H26O2	274.19	Vial 3			
	0		fluoxymesterone	Anabolic	C20H29F03	336.21	P1-A3			
	0		trenbolone	Anabolic	C18H22O2	270.16	P1-A2	•••••		
	0		dihydrotestosterone	Anabolic	C19H30O2	290.22	P1-A6			
	0		d3-testosterone	Anabolic	C19H25D3O2	291.23	Vial 4			
Đ			3-oh stanozolol	Anabolic	C21H32N2O2	344.25	P1-A8			
			boldenone	Anabolic	C19H26O2	286.19	P1-A1			
	2		zilpaterol	beta-agonist	C14H19N3O2	261.15	Vial 5			

Optimizer will calculate precursor ion m/z from molecular formulae Can assign compounds to Groups for later browsing

MassHunter Optimizer – precursor ion selection User-selectable adducts (H, Na, K, OAc⁻, HCOO⁻, etc.) Can run both positive and negative ion methods in same Project

😡 MassHunter Optimizer			
🕴 🧭 New Project 🔒 Load Project 🔠 Sav	re Project 🔣 SaveAs Project 📆 Save Compounds	🔀 Delete Project 📮 🚺 Start Optimization	😭 Ion Breakdown Profile 💿 Stop Optimization 🍦
😨 💮 Import From DataBase 🔞 Import Fro	m Excel 🔞 Export To Excel 🥊		
Compound Setup Precursor Ion Selection	Product Ion Selection Optimizer Setup		
Positive ions (With priorities)	Negative ions (With priorities)		
✓ +H	✓ H	Use most abundant precursor ion	
Do not exclude masses			
Precursor Ion			
m/z Value(s)		(separated by commas)	
Minimum abundance	counts		

Optimizer – product ion selection and rejection (set mass range, minimum abundance)

MassHunter Optimizer		
💋 New Project 🕒 Load Project	: 📙 Save Project 📓 SaveAs Project 🛃 Save Compounds 🗙 Delete Project 🚽 🖸 Start Optimization 🏠 Ion Breakdown Profile 💿 St	op Optimization
🙆 Import From DataBase 🎯 I	import From Excel 🔞 Export To Excel 💂	
Compound Setup Precursor Ion S	Selection Product Ion Selection Optimizer Setup	
CLow mass cut-off		
💿 Mass (mz)	50	
🔘 % Precursor mass (mz)		
O not exclude masses		
Exclude masses		
Product Ion		
m/z Value(s)	(separated by commas) Neutral Losses	
Minumum abundance	counts	

Optimizer – method type, parameter step selection

😡 MassHunter Optimizer				
🛷 New Project	ave Compounds 🗙 Delete Project 🍦 🚺 Start Optimizat	ion 😭 Ion Breal	kdown Profile 🛛 🙁	Stop Optimization
🐵 Import From DataBase 🐵 Import From Excel 🐵 Export To Excel 🥃 🚽				
Compound Setup Precursor Ion Selection Product Ion Selection Optimizer Se	tup			
Sample introduction				
 Injection (with or without column) 	Path for data files D:\MassHunter\data\Dptimizer\			[
Automatic infusion using Loop injection	Method	Polarity	Ion Source	
Manual infusion using syringe	D:\MassHunter\methods\optimize acn40_0.4ml min.	Positive	ESI	
Bamp Settings				
Fragmentor Coarse From 40 To 240				
✓ Fragmentor Fine Step 5 (+/-5 steps around coarse)				
Collision Energy From 0 To 120				
Runs per compound = 5 (Read Only)				
Pick precursor ion and optimum fragmentor (SIM)				
Optional - Fine tune fragmentor (SIM)				
Pick product ions (Product Ion Scan)				
Obtain optimum CE for product ions (MRM)				
☑ Obtain exact product ion m/z (Product Ion 'narrow' Scan)				>

Optimizer results Automatically added to MRM database

98)	- 17 -	(u ~)	Ŧ		OptimizerReport	.xlt [Read-Only] [C	ompatibility N	vlode] - N	vicrosoft Ex	cel	-	•	x
	Print Pre	view											0
		Q	Next Pag	e 💽									
Print	Page	Zoom	Previous	Page Close	Print								
Pri	Setup nt	Zoom	Show M	Preview Previ	iew								
		-									 -		-
			0	ompoundNa	me Formu	la Nominali	Mass Vi	alNumbe	or .				
			zi	lpaterol	C14H19	N3O2 261.15	Via	al 5					
			м	lethod N ame					Polarity	IonSource			
			D	:\MassHunter	\methods\optimiz	ze acn40 0.4ml mir	n.m		Positive	ESI			
			P 26	recursor Ion	n Fragmento	Product Ion	CollisionE	nergy	Abund	ance			Π
			20	52.16	95	157.1	36		250851				
			26	52.16	95 95	244.1 130 1	8 52		675328				
			2.	2.10		150.1	52		202002				
													-
4												•	

Optimizer – interactive parameter selection

MassHunter Optimizer		
🗇 New Project 🔒 Load Project 🔚 Save Project 🛃 SaveAs Project 🔚 Save Compounds 🗙 Delete Project 🚽 🖸 Start Optimization	n 😭 Ion Breakdown Profile	Stop Optimization
🔞 Import From DataBase 🔞 Import From Excel 🔞 Export To Excel 🖕	Ten Duralidaum Durfila	
Compound Setup Precursor Ion Selection Product Ion Selection Optimizer Setup	Ion Breakdown Profile	

MassHunter Optimizer

Results for the project can be viewed immediately after run: precursor and product ions, Fragmentor and Collision Energies

• 1	Aasshunter Optimiz	zer											
	🏷 New Project 🔒 Load Project 🛃 Save Project 🛃 SaveAs Project 🛃 Save Compounds 🖕 🕟 Start Optimization 🧁 Ion Breakdown Profile 🔕 Stop Optimization 🖕												
: {6	🔞 Import From DataBase 🔞 Import From Excel 🔞 Export To Excel 🖕												
Co	mpound Setup Precu	ursor Ion Selection	Product Ion Selec	tion Optimiz	er Setup	ן							
	Show results summary												
	Compound Name	Method	Precursor Ion	Fragmentor	Prod	Collision Energy	Abundance	CompoundID	Formula	GroupName	NominalMass	ProjectMethodID	Projec 🔨
►					64.67	35	1619	03d93a1e-3aa8-46	C10H11N3O3S	PPCP	253.05211197	ppcp1 d:\masshunt	PPCP1
	Sulfamethoxazole	D:\MassHunter\m	254.0599	75	91.92	35	3754	03d93a1e-3aa8-46	C10H11N3O3S	PPCP	253.05211197	ppcp1 d:\masshunt	PPCP1
					107.7	20	2754	03d93a1e-3aa8-46	C10H11N3O3S	PPCP	253.05211197	ppcp1 d:\masshunt	PPCP1
			263.078	81	89.7	31	642	0d639d41-e517-47	C11H10N4O4	PPCP	262.07020483	ppcp1 d:\masshunt	PPCP1
	Carbadox	D:\MassHunter\m			230.8	8	2377	0d639d41-e517-47	C11H10N4O4	PPCP	262.07020483	ppcp1 d:\masshunt	PPCP1
					244.7	16	1039	0d639d41-e517-47	C11H10N4O4	PPCP	262.07020483	ppcp1 d:\masshunt	PPCP1
			271.0323		91.9	27	1616	2978a3b6-b5c1-45	C9H10N402S2	PPCP	270.02451705	ppcp1 d:\masshunt	PPCP1
	Sulfamethizole	D:\MassHunter\m		75	107.9	22	1125	2978a3b6-b5c1-45	C9H10N402S2	PPCP	270.02451705	ppcp1 d:\masshunt	PPCP1
					150	10	3043	2978a3b6-b5c1-45	C9H10N402S2	PPCP	270.02451705	ppcp1 d:\masshunt	PPCP1
	Sulfachloropyridazin	D:\MassHunter\m	285	91	1 1 36	12	3968	2d28913f-144f-46d	C10H9CIN402	PPCP	284.01347400	ppcp1 d:\masshunt	PPCP1
					92	33	4682	2f28843f-36b8-4af4	C12H14N4O4S	PPCP	310.07357569	ppcp1 d:\masshunt	PPCP1
	Sulfadimethoxine	D:\MassHunter\m	311.0814	75	107.9	29	3276	2f28843f-36b8-4af4	C12H14N4O4S	PPCP	310.07357569	ppcp1ld:\masshunt	PPCP1
					156	18	9464	2f28843f-36b8-4af4	C12H14N4O4S	PPCP	310.07357569	ppcp1 d:\masshunt	PPCP1
	Thiabendazole	D:\MassHunter\m	202.0439	75	175.1	27	51844	32298403-db9e-4c	C10H7N3S	PPCP	201.03606797	ppcp1 d:\masshunt	PPCP1 🧹
<									•				
Proje	ect Name : PPCP1		Optimiz	er Status : Rea	ady			Cu	rrent Record			All Records	

Optimizer Browse compounds in Acquisition for import

Compounds can be Compounds can be filtered by project, searched for by group, polarity or date name or formula 🛃 CompoundsBrowser Filter Compo Search Compounds Optimized Compounds Compound Name 📃 Date To 6/20/2008 From Formula 🔽 Group Name PPCP ~ Project Name PPCP1 ¥ Show All Records Show results summary ~ Polarity Positive Compound Information Compound Name Group Formula Nominal Mass Vial Number Project Name PPCF Sulfamethoxazole C10H11N3O3S 253.05211197 P1-A1 PPCP1 PPCF PPCP1 Carbadox C11H10N4O4 262.0702048378 P1-A1 Sulfamethizole PPCP PPCP1 C9H10N402S2 270.0245170532 P1-A1 ÷ Sulfachloropyridazin PPCP C10H9CIN402S 284.0134740013 P1-A2 PPCP1 ۲ PPCP PPCP1 Sulfadimethoxine C12H14N4O4S 310.0735756954 P1-A1 Ð Thiabendazole PPCF C10H7N35 201.0360679755 P1-A2 PPCP1 Ξ PPCF Ranitidine C13H22N4O3S 314.1412613283 P1-A4 PPCP1 Ð Sulfamerazine PPCF C11H12N402S 264.068096387 P1-A1 PPCP1 Đ Cimetidine PPCF C10H16N6S 252.1157152848 P1-A4 PPCP1 Ð PPCP Metformin C4H11N5 129.1014453879 P1-A4 PPCP1 Ð PPCP C15H12N20 236.0949630199 P1-A2 PPCP1 ÷ Carbamazepine Albuterol PPCF C13H21NO3 239.1521435442 P1-A4 PPCP1 Caffeine PPCP C8H10N402 194.0803755932 P1-A1 PPCP1 Refresh Save Cancel

MassHunter Optimizer

Build LC/MS/MS method from compound database

CompoundsBrowse	Ĵ									
Iter Compounds						Search Compou	nds			
🔽 Optimized Compo	ound:	s				Compo	und Name			
Date From 6/20/2008 To 6/20/2008						- Formul	•			
🗹 Group Name	F	PCP	~							
🗹 Project Name	F	PCP1	~			_				
Polarity	F	ositive	~			Show All Records		Show results summary		
ompound Information	_									
Compound Name		Method	Precursor Ion	Fragmentor		Product Ion	Collision Energy	Abundance	Project Name	
					v	64.67146	35	1619	PPCP1	
			254.0599	75	•	91.92621	35	3754	PPCP1	1
ск. н I		D:\MassHunter\m			•	107.7074	20	2754	PPCP1	1
Sulramethoxazole					•	64.67146	35	1619	ррср2	1
						91.92621	35	3754	ррср2	1
						107.7074	20	2754	ррср2	1
						89.7	31	642	PPCP1	
						230.8	8	2377	PPCP1	1
			000.070		v	244.7	16	1039	PPCP1	1
⁷ Carbadox		D:\MassHunter\m	263.078	81	~	89.7	31	642	ррср2	1
						230.8	8	2377	ррср2	
						244.7	16	1039	ррср2	
						Refresh	Save	Impo	ort C	ancel

- Select compounds in database after filtering
- Select transitions for each compound (all or individual)
- Easily import into template LC/MS method

Dynamic MRM

Optimization of MRM Acquisition

•Good quantitation requires adequate number of data points across each peak (ideally 10-20)

•High confidence or regulated identification requires > 1 MRM per compound.

•Monitoring many compounds simultaneously lowers dwell time per MRM.

•Therefore for best sensitivity, only monitor compounds in retention time window where they elute.

•Traditional approach of time segments has limitations and is tedious to setup up and maintain.

Peak Capacities are very high with UHPLC 40 MRM Transitions in 1 minute time window

Agilent Technologies

The solution: MassHunter Dynamic MRM Included in QQQ Acquisition B.02.01

For applications requiring quantitation of 100 – 1000 compounds in one run; some examples:

- Food and environmental analysis (e.g. pesticides)
- Targeted quantitation of proteins via peptides (proteomics)

WITHOUT Dynamic MRM:

- Need to manually set up multiple time segments to maximize dwell times
- Tedious to set up; problematic if changes in retention times

WITH Dynamic MRM:

- Automatic setup of overlapping time segments without user intervention
- Fewer MRMs per unit time results in longer dwell time => incr sensitivity
- Unaffected by minor chromatographic time shifts

Dynamic MRM for 6400 Series Triple Quads monitors transitions only when compounds elute

- 1. # Concurrent MRMs fewer than with time segments \rightarrow more data points across each peak
- 2. Allows longer dwell times \rightarrow better sensitivity, S/N

Agilent Technologies

Acquisition setup with Dynamic MRM: No time segments, instead

Retention Time and "Delta Ret Time" [MRM time range]

1	cqu	uisition Source	Chromat	ogram In:	strument	Diagnostic	s						
Г	Scan segments												
		Compound Name	ISTD?	Precursor Ion	MS1 Res	Product Ion	MS2 Res	Fragmentor	Collision Energy	Ret Time (min)	Delta Ret Time	Polarity	•
l	۲	Alprazolam		309.1	Unit	281	Unit	179	25	3.715	1	Positive	
		Cocaine		304.2	Unit	182.1	Unit	138	17	2.358	1	Positive	
		d-Amphetamine		136.1	Unit	91	Unit	66	17	1.278	1	Positive	
		Diazepam		285.1	Unit	154	Unit	169	25	4.269	1	Positive	
		Heroin		370.2	Unit	165	Unit	149	61	2.236	1	Positive	
		Hydrocodone		300.2	Unit	199	Unit	159	29	1.38	1	Positive	
		Lorazepam		321	Unit	275	Unit	102	21	3.61	1	Positive	
		MDA		180.1	Unit	163	Unit	61	5	1.311	1	Positive	
		MDEA		208.1	Unit	163	Unit	107	9	1.72	1	Positive	-
	Dyr Cj	namic MRM Paramete ycle Time 500	rs ms										

8 Minute Dynamic MRM Analysis with 6460 QQQ - 250-compound Pesticide Screen.

Summary – Optimization of QQQ Acquisition

- •Source optimization: flow and compound dependent parameters
- •Agilent Jetstream Technology source: increased sensitivity vs regular ESI source if parameters optimized correctly:
 - Sheath gas temperature and flow are most important
 - Other parameters have less effect on response
 - Need less drying gas flow and temperature, but keep capillary clean
- •Dynamic MRM is available for all 6400 models
 - More data points across peak
 - Longer dwell times for better sensitivity, S/N
 - Easier to set up and maintain than time segment methods

MassHunter Quantitative Software Review and Quant Method Optimization

Topics

- Method setup from acquired data
- Method re-use and updating
- Peak detection optimization
- Peak identification troubleshooting
- What's new in MH Quant B.03.02

Important MassHunter Quant concepts and rules: Batches

•A Batch is a file which contains all the Quant results from a set of data files AND the Quant method used. Very convenient for backup and moving data around.

•All the data files in a Batch must reside in a single directory, so put them all together <u>before</u> creating New Batch.

•Select the data directory BEFORE naming the new Batch

•Using the *Browse to Copy Samples* button when creating the Batch can be dangerous: you will have two copies of the same files (one with Quant results and one without)!

Important MassHunter Quant concepts and rules: Quant methods

•THE most common method problem: Calibration/QC level names in Batch and Quant method do not match, e.g.

- Batch: levels are 1,2,...5, QC-Lo, QC-Hi
- Method: levels are L1, L2...L5, QC-Low, QC-High

•2nd most common problem: a hidden column in the Method with a key parameter, e.g. <u>Criteria</u> in MRM Compound Setup for peak selection, or <u>Ion Polarity</u> if method created manually.

•Many Quant parameters can be copied between compounds with *Apply to All* button.

•When in doubt, Right-Click to look for convenient features and shortcuts, like Fill Down or Fill Column.

MassHunter Quant – optimizing target compound identification

Make the Criteria column visible in MRM Compound Setup:

Ų	lantifier									
	Name	TS	Transition	Scan	Туре	RT	Left RT Delta	Right RT Delta	RT Delta Units	Criteria
-	Tramadol-13CD3	2	268.2 -> 58.1	MBM	ISTD	1.850	0.500	0.500	Minutes	Greatest Response
•	Tramadol	2	264.2 -> 58.1	MBM	Target	1.850	0.500	0.500	Minutes 🛛 💌	Greatest Response

Using the default of Greatest Response may result in the wrong peak being chosen as the target compound:

Endogenous interference with wrong retention time incorrectly identified as tramadol (no qualifier)

MassHunter Quant – optimizing target compound identification

Change the Criteria to be more specific:

	Quantifier									
	Name	TS	Transition	Scan	Туре	RT	Left RT Delta	Right RT Delta	RT Delta Units	Criteria
-	Tramadol-13CD3	2	268.2 -> 58.1	MRM	ISTD	1.850	0.500	0.500	Minutes	Close RT
	Tramadol	2	264.2 -> 58.1	MRM	Target	1.850	0.500	0.500	Minutes	Close RT

This might still not be selective enough, so specify how close the retention time must match the calibrated RT with Nonreference Window parameter in Globals:

Now the offending peak with the wrong RT is ignored:

MassHunter Quant – optimizing target compound identification

Qualifying the Qualifier:

For qualifiers, you can ensure that the qualifier and the quant ion have the same retention time (i.e. line up properly as they should if coming from the same chromatographic peak), by setting the **Correlation Window** in Globals correctly. The default of 2 minutes is

WAY too large.

The Ignore Peaks Not Found checkbox will prevent reporting "Amount=0.00" for target compounds not present with your criteria.

MassHunter Quant – Setting a reporting threshold:

You can also make Quant ignore peaks that meet these criteria but are below your desired detection or reporting threshold, or that really are background (if you can't use Qualifiers). Set a Peak Filter (area reject) value in Advanced Tasks ...Integration Parameters.

RT Int. 1.552 MS-MS	Int. Parms.	Noise Alg.
Integration		? 🛛
Int. Parr Integrator General	Peak Filter	
 Peak Area (cour 	nts) >= 10000	counts
Peak Height (co	unts) >= 10000	counts
📃 🔿 Peak Area (%)	>= 1	% of largest peak
🔿 Peak Height (%)	>= 5	% of largest peak
nt. Parr	neako	
Limit to the larges	t 1	neaks
	\mathbf{i}	
136.1 -> © 510 4		Apply to All
	Reset Default	
4-	1 1/~1	

You can have the same Peak Filter for all compounds with Apply to All, or specific values for each compound. You can also limit integration to the N largest peak(s), like only one in this example.

MassHunter Quantitation Integrators:

General Universal MS/MS – requires 64 data points within window

What's new in MassHunter Quant B.03.02 (just type 'What's new' in the Online Help!)

MassHunter Quantitative Analysis Help

Quantitative Analysis	Getting Started
Analyze a batch Create or modify the batch table Integrate a batch, sample, compound Print reports Quantitate a batch, sample, compound Review results	What's New in B.03.01
Method Development	Basic Software Tasks
Create a new method Edit a method Exit a method Open a method Save a method Set an outlier Validate a method	Table tasks Window tasks
Compliance and Security	Reference
Assign roles to actions or commands Change global compliance settings Check the integrity of batch files Configure additional security Save or copy check batch file results	Batch table columns Method table columns Main window Reports Dialog box Queue viewer ATM configuration window Check batch files Data set tables

What's new in MassHunter Quant B.03.02 Something for everybody

What's new in MassHunter Quant B.03.02 More legibly:

Software Enhancements (some are instrument-specific)

•Approximately 10 times faster batch analysis processing

- •Compound Math !
- •Metrics plot (e.g. for IS areas)
- •Support for QQQ dynamic MRM data
- •More integrator choices: "Universal" (ChemStation) and GC/MS/MS integrators
- •Fixed graphics to lowest calibration level
- •Signal to noise setup
- •Continuing calibration
- •Dynamic background subtraction
- •Standard addition calibration
- •Compound library setup and searching
- •Peak purity and deconvolution
- •More choices in the Generate Reports dialog (e.g. no graphics)

•Direct Link to Getting Started Videos and Familiarization Guide

Final recommendation for learning MassHunter Quant:

Uses data files included with the software

